Using melt polymerization to fabricate robust covalent organic framework foams – Phys.org


Forget Password?
Learn more
share this!
Share
Twit
Share
Email
April 22, 2022
by
Adsorption-based (e.g., gas or liquid molecules) separation technologies have shown unique economic and environmental advantages in specific applications. In industrial applications, ideal high-efficiency adsorbents require not only high adsorption capacity/selectivity, but also good machinability, cycling, and mechanical stability. Thus, it is necessary to assemble the adsorbents into high-stability monoliths (e.g., spheres, membranes, aerogels, etc.). Recently, COFs, as an emerging class of advanced adsorbents, have demonstrated many heartening performances in numerous separation fields. However, most of the state-of-the-art COF adsorbents still suffer from issues such as low processability (mostly existing as microcrystalline powders), lack of stability (mostly built by the reversible bond linkages), and difficulty for scalable synthesis. Therefore, it is of great significance to create new strategies to produce highly robust COF monoliths (e.g., porous foams) for practical applications.

Melt polymerization methods are often used to prepare linear polymers. Since both monomers and polymers are in a molten state, it is easy to directly process and shape. Inspired by this, Zhang’s group from Nankai University first introduced the “melt polymerization” strategy into COFs synthesis. By adding benzoic anhydride as a , a “one-step thermoforming” method was developed to prepare a series of olefin-linked COF foams. This is because the flux promoted the monomers to form a eutectic, which slowly crystallized upon heating, and finally solidified to form highly crystalline COF foams (density as low as 0.23 g/cm3).
This method not only can enhance crystallinity and porosity of the reported COFs, but also can produce new COFs that cannot be obtained by the traditional solvothermal methods. For example, a novel olefin-linked COF (NKCOF-12) with ultra-micropores (0.58 nm) was synthesized for the first time by this method. These obtained foams demonstrate excellent processability and which are suitable for adsorption and separation.
The oil-water selective experiments showed that these foams achieved highly efficient oil-water separation (up to 99% removal efficiency) with facile recycling and ultrahigh reusability (more than 100 cycles). Moreover, NKCOF-12 with the smallest pore size among all reported eclipsed stacking 2-D COFs was constructed. Attributed to its regular ultramicroporous channel (0.58 nm) and enriched binding sites, NKCOF-12 possesses excellent C2H2/CO2 separation performance with higher C2H2 purity (99.3%) than the benchmark materials. This work not only provides an opportunity for the construction of COF foams via melt polymerization but also significantly advances the development of COFs for practical applications. The results are published in Science China Chemistry.
Explore further
Facebook
Twitter
Email
Feedback to editors
2 hours ago
0
2 hours ago
0
3 hours ago
0
Apr 21, 2022
0
Apr 21, 2022
1
1 hour ago
1 hour ago
1 hour ago
1 hour ago
1 hour ago
1 hour ago
1 hour ago
28 minutes ago
34 minutes ago
37 minutes ago
46 minutes ago
52 minutes ago
1 hour ago
More from Physics Forums | Science Articles, Homework Help, Discussion
Aug 03, 2020
Jul 29, 2021
Jan 19, 2022
Mar 30, 2022
Jul 06, 2021
May 05, 2021
1 hour ago
23 hours ago
Apr 21, 2022
Apr 21, 2022
Apr 21, 2022
Apr 21, 2022
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.

source