Perovskite–organic tandem solar cells with indium oxide interconnect – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature volume 604pages 280–286 (2022)
113 Altmetric
Metrics details
Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2,3,4,5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite–organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite–organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite–organic tandems, which outperform the best p–i–n perovskite single junctions12 and are on a par with perovskite–CIGS and all-perovskite multijunctions13.
This is a preview of subscription content

Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly

Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).
ADS  CAS  Article  Google Scholar 
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).
ADS  CAS  Article  Google Scholar 
Han, Q. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018).
ADS  CAS  Article  Google Scholar 
Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).
ADS  CAS  Article  Google Scholar 
Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).
CAS  Article  Google Scholar 
Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).
ADS  CAS  Article  Google Scholar 
Liu, Q. et al. 18% Efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).
CAS  Article  Google Scholar 
Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).
CAS  Article  Google Scholar 
Li, C., Wang, Y. & Choy, W. C. H. Efficient interconnection in perovskite tandem solar cells. Small Methods 4, 2000093 (2020).
CAS  Article  Google Scholar 
Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).
CAS  Article  Google Scholar 
Zhan, L. et al. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635–645 (2020).
CAS  Article  Google Scholar 
Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, 7930 (2021).
ADS  Article  Google Scholar 
Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).
CAS  Article  Google Scholar 
Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
ADS  CAS  Article  Google Scholar 
Graetzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).
ADS  Article  Google Scholar 
McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
ADS  CAS  Article  Google Scholar 
Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).
ADS  Article  Google Scholar 
Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).
CAS  Article  Google Scholar 
Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).
ADS  CAS  Article  Google Scholar 
Green, M. A. et al. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 28, 629–638 (2020).
Article  Google Scholar 
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).
ADS  CAS  Article  Google Scholar 
Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).
ADS  CAS  Article  Google Scholar 
Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon. 12, 131–142 (2018).
ADS  CAS  Article  Google Scholar 
Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).
ADS  CAS  Article  Google Scholar 
Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).
ADS  CAS  Article  Google Scholar 
Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).
CAS  Article  Google Scholar 
Yu, R. et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 31, 1902302 (2019).
Article  Google Scholar 
Zhu, Y. et al. Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component. Adv. Energy Mater. 9, 1900376 (2019).
Article  Google Scholar 
Gasparini, N. et al. Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371–1379 (2020).
CAS  Article  Google Scholar 
Du, X. et al. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 32, 1908305 (2020).
CAS  Article  Google Scholar 
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).
CAS  Article  Google Scholar 
Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).
Article  Google Scholar 
Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).
CAS  Article  Google Scholar 
Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).
CAS  Article  Google Scholar 
Park, B.-W. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018).
ADS  Article  Google Scholar 
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).
ADS  CAS  Article  Google Scholar 
Doung, T. et al. High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10, 1903553 (2020).
Article  Google Scholar 
Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017).
ADS  CAS  Article  Google Scholar 
Behrendt, A. et al. Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv. Mater. 27, 5961–5967 (2015).
CAS  Article  Google Scholar 
Gahlmann, T. et al. Impermeable charge transport layers enable aqueous processing on top of perovskite solar cells. Adv. Energy Mater. 10, 1903897 (2020).
CAS  Article  Google Scholar 
Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).
CAS  Article  Google Scholar 
Zhang, S. & Scheu, C. Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis. Microscopy 67, 133–141 (2018).
Article  Google Scholar 
Becker, T. et al. All-oxide MoOx/SnOx charge recombination interconnects for inverted organic tandem solar cells. Adv. Energy Mater. 8, 1702533 (2018).
ADS  Article  Google Scholar 
Meyer, J. et al. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427 (2012).
ADS  CAS  Article  Google Scholar 
Hagleitner, D. R. et al. Bulk and surface characterization of In2O3(001) single crystals. Phys. Rev. B 85, 115441 (2012).
ADS  Article  Google Scholar 
Lany, A. et al. Surface origin of high conductivities in undoped In2O3 thin films. Phys. Rev. Lett. 108, 016802 (2012).
ADS  CAS  Article  Google Scholar 
Bellingham, J. R., Phillips, W. A. & Adkins, C. J. Intrinsic performance limits in transparent conducting oxides. J. Mater. Sci. Lett. 11, 263–265 (1992).
CAS  Article  Google Scholar 
Hoffmann, L. et al. Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 10, 6006–6013 (2018).
CAS  Article  Google Scholar 
Brinkmann, K. O. et al. The optical origin of near-unity external quantum efficiencies in perovskite solar cells. Sol. RRL 9, 2100371 (2021).
Article  Google Scholar 
Brinkmann, K. O. et al. Extremely robust gas-quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p–i–n) solar cells by targeting the precursor wetting issue. ACS Appl. Mater. Interfaces 11, 40172–40179 (2019).
CAS  Article  Google Scholar 
Libera, J. A., Hryn, J. N. & Elam, J. W. Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water. Chem. Mater. 23, 2150–2158 (2011).
CAS  Article  Google Scholar 
Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017).
CAS  Article  Google Scholar 
Wei, W. & Hu, Y. W. Catalytic role of H2O in degradation of inorganic–organic perovskite (CH3NH3PbI3) in air. Int. J. Energy Res. 41, 1063–1069 (2017).
CAS  Article  Google Scholar 
Yang, J., Siempelkamp, B. D., Liu, D. & Kelly, L. D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015).
CAS  Article  Google Scholar 
Timmreck, R. et al. Characterization of tandem organic solar cells. Nat. Photon. 9, 478–479 (2015).
ADS  CAS  Article  Google Scholar 
Zhang, S. et al. Different photostability of BiVO4 in near-pH-neutral electrolytes. ACS Appl. Energy Mater. 3, 9523–9527 (2020).
CAS  Article  Google Scholar 
Shiga, M. et al. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy 170, 43–59 (2016).
CAS  Article  Google Scholar 
Wurfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).
ADS  Article  Google Scholar 
Würfel P. & Würfel U. Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, 2016).
Download references
We acknowledge the Deutsche Forschungsgemeinschaft (DFG) (within the SPP 2196: grant numbers RI 1551/15-1, RI 1551/12-1; individual grant numbers: RI 1551/18-1, RI 1551/4-3, RI 1551/7-2 and HE 2698/7-2), the Bundesministerium für Bildung und Forschung (BMBF) (grant number: 01DP20008) and the Bundesministerium für Wirtschaft und Energie (BMWi) (grant number: ZF4037809DF8) for financial support. The research leading to these results has received partial funding from the European Union’s Horizon 2020 Programme under grant agreement no. 951774 (FOXES). This work was also partially funded by the European Regional Development Fund (ERDF) (grant number: EFRE 0801507), S.O. and C. Koch further thank the SCALUP project. (SOLAR-ERA.NET Cofund 2, id: 32). We thank Mountain Photonics for providing us with a Prizmatix high-power white LED as well as Tesa Germany for providing us with sealing duct tape. We also thank J. Wang and R. Janssen from the Eindhoven University of Technology for their support in verifying some EQE values reported in this work. We thank B. Gault and A. Sturm from the Max-Planck-Institut für Eisenforschung GmbH for help with the FIB and for enabling the STEM measurements. We also thank the ESRF for the admission of X-ray diffraction measurements and gratefully appreciate the support by our local contacts O. Konovalov and M. Jankowski. Finally, we acknowledge J. Hohl-Ebinger from the Fraunhofer ISE CalLab for valuable consultation throughout the certification process.
These authors contributed equally: K. O. Brinkmann, T. Becker
Institute of Electronic Devices, University of Wuppertal, Wuppertal, Germany
K. O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann, M. Theisen, T. Haeger, C. Tückmantel, M. Günster, T. Maschwitz, F. Göbelsmann & T. Riedl
Wuppertal Center for Smart Materials & Systems, University of Wuppertal, Wuppertal, Germany
K. O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann, M. Theisen, T. Haeger, C. Tückmantel, M. Günster, T. Maschwitz, F. Göbelsmann & T. Riedl
Department of Chemistry, University of Cologne, Cologne, Germany
S. Olthof, C. Koch, D. Hertel & K. Meerholz
Soft Matter Physics and Optoelectronics, University of Potsdam, Potsdam, Germany
P. Caprioglio, F. Peña-Camargo, L. Perdigón-Toro, D. Neher & M. Stolterfoht
Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK
P. Caprioglio
Young Investigator Group – Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Berlin, Germany
A. Al-Ashouri & S. Albrecht
Faculty of Electrical Engineering and Computer Science, Technical University Berlin, Berlin, Germany
S. Albrecht
Institute of Applied Physics, University of Tübingen, Tübingen, Germany
L. Merten, A. Hinderhofer & F. Schreiber
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
L. Gomell & S. Zhang
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
T.R., T.B. and K.O.B. conceived and designed the experiments. S.O. and C. Koch contributed the XPS, UPS and IPES analysis. K.O.B., T.B., F.Z., C. Kreusel, M.G., T.M., C.T. and F.G. performed the experimental work on the solar cells. T.G. and M.T. contributed the metal oxide ALD layers as well as electrical characterization. T.H. did the cross-section SEM measurements. P.C., L.P.-T., D.N. and M.S. designed, conducted and evaluated the PLQY/QFLS studies. A.A.-A. and S.A. provided the expertise in the processing of the self-assembled monolayers. D.H. and K.M. contributed temperature-dependent J–V characterization. L.M., A.H. and F.S. designed and conducted the GIWAXS and L.G. and S.Z. the HAADF-STEM and EDS studies. All authors discussed the results and were involved in the writing.
Correspondence to K. O. Brinkmann or T. Riedl.
The authors declare no competing interests.
Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary text, figures, notes and references.
Reprints and Permissions
Brinkmann, K.O., Becker, T., Zimmermann, F. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
Download citation
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-04455-0
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Advertisement
Advanced search
Nature (Nature) ISSN 1476-4687 (online) ISSN 0028-0836 (print)
© 2022 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source